

Rubber- and cellular buffers

Rubber- and cellular buffers

Industrial Brakes · Thrusters · Pressure Oil Pumps · Couplings · Hydraulic Buffers · Cellular Buffers Rail Pliers · Sheaves · Hook Blocks · Crane Rail Wheels · Rail Clamps · Reparation · Service

Buffers with high energy absorption capacity are required on cranes to avoid deformation of structural components when the crane strikes against the runway limit stop. For this purpose, a special cellular buffer has been developed which is also useful in any other application where impact energy with a limit maximum load is to be converted.

Polyurethane[®], a cellular material with excellent physical properties, is used for the buffer body whose elasticity and energy absorption capacity are materially improved by the cellular structure. Due to the specific properties of the plastic material employed and to the action of the gas occluded in the cells, the energy absorption increases with impact velocity.

There is no limit stop that would restrict the compression of the buffer body, so that even in the case of a violent collision the cushioning effect is maintained till the end of impact.

Cellular buffers at the travel unit of a 900t gantry crane

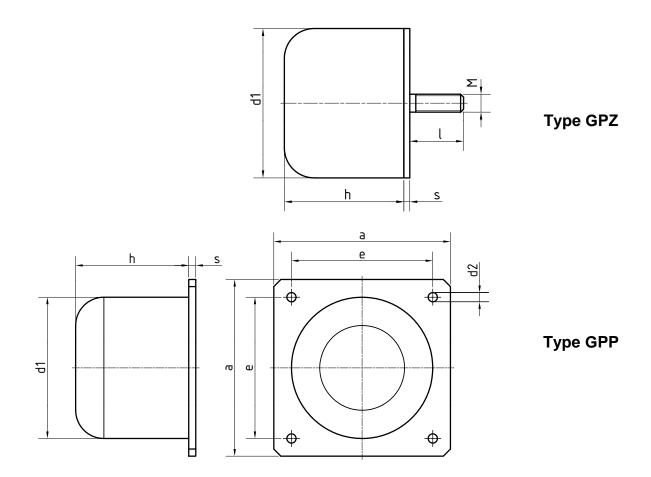
Cellular buffers at the travel unit of a 200t shipyard crane

The entire buffer volume is utilized to absorb energy, since the impact load will be distributed throughout the buffer's cross-sectional area. The buffer undergoes very little radial expansion even under the largest possible compression.

A favourable diameter-to-length ratio in conjunction with non-slip face make the cellular buffer virtually insensitive to axial misalignment due to the crane's normal wheel/rail clearance.

The buffer material provides chemical resistance to ozone, oxygen, water, gasoline and most oils and industrial lubricants. The buffer works silently. Its shock-absorbing capacity is fully retained over a temperature range from -40° C to $+80^{\circ}$ C.

Cellular buffers at the travel unit of a 250t ladle crane and at the end stop of the crane track



Cellular buffers at the travel units of two 175t ladle cranes

KoRo IBS GmbH

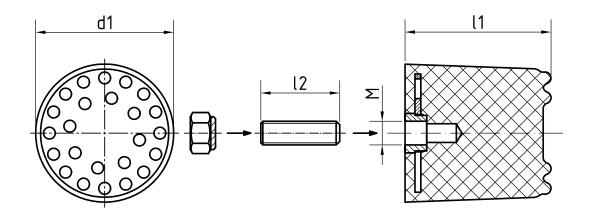
Stockumer Straße 28 58453 Witten (Germany) Tel. 0049 2302 70 78 7-0 Fax 0049 2302 70 78 7-10 Mail: info@koro-ibs.de Web: www.koro-ibs.de

Size	Dimensions							Energy absorption characteristic	Wheel travel	End force	Wei k	ight g
d ₁	а	d ₂	е	h	I	S	М	kJ ¹⁾	mm ¹⁾	kN ¹⁾	KPG	GPP
40	50	5,5	40	32	28	2	M 8	0,05	16	10	0,07	0,08
50	63	6,5	50	40	33	2	M10	0,10	20	16	0,14	0,15
63	80	6,5	63	50	32	3	M10	0,20	25	25	0,26	0,31
80	100	9,0	80	63	37	3	M12	0,39	32	39	0,50	0,59
100	125	9,0	100	80	36	4	M12	0,78	40	62	0,98	1,20
125	160	11,0	125	100	46	4	M16	1,57	50	98	1,90	2,30
160	200	11,0	160	125	44	6	M16	3,14	63	157	4,10	4,90
200	250	13,0	200	160	49	6	M20	6,18	80	245	7,80	9,50
250	315	13,0	250	200	47	8	M20	12,30	100	392	16,40	19,40
315	400	-	315	250	-	-	-	24,50	125	618	-	-
1)	These	alues are	only vali	d for stre	kes tha	t occur i	n crane or	perations				

These values are only valid for strokes that occur in crane operations

Rubber buffer with thread:

Rubber quality: NK/SBR 70 +/-5 Shore A Other qualities upon request Metal parts are white zinc-plated


Rubber buffer with baseplate:

Material plate: S 235 JR

Customer-specific design upon request

I

			Energy absorption characteristic	Wheel travel	End	force	Weight
1	12	М	kJ (max)***	mm [*]	kN ^{**}	kN (max)***	kg
70			0,9	46,2	18	37	0,4
105	45	M 10	2,6	70,0	27	70	0,8
125			5,1	84,0	45	105	1,2
155	55		9,2	105,0	95	150	1,8
205	85	M 20	20,0	140,0	120	270	4,1
	70 105 125 155	70 105 45 125 155 55	70 105 125 155 55	Instrumental line Absorption characteristic 11 12 M kJ (max) ^{***} 70 M KJ (max) ^{***} 0,9 105 45 M 12 2,6 125 55 9,2	Instruction absorption characteristic writeer travel 11 12 M kJ (max)*** mm* 70 45 M 12 2,6 70,0 125 M 12 5,1 84,0 155 55 9,2 105,0	Instrument Instrument Instrument Instrument End Instrument Instrument	Instruction absorption travel Write travel End force I1 I2 M kJ (max) ^{***} mm [*] kN ^{**} kN (max) ^{***} 70 45 M 12 0,9 46,2 18 37 105 45 M 12 2,6 70,0 27 70 125 55 55 9,2 105,0 95 150

recommended maximal deformation (70% of H)
at recommended max deformation and 120 m/m

* at recommended max. deformation and 120 m/min

*** data for impact speed of 240 m/min

for lower speeds is the max. energy absorption reduced data can be taken from the characteristics

Reliabilities:

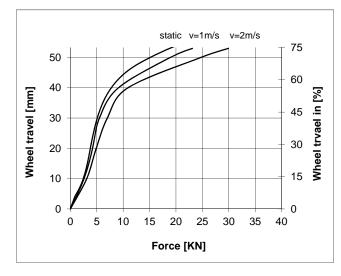
Polyetherurethane is in the temperature range -40 ° C to +80 ° C max.

Transient temperature peaks up to +110 °C are possible.

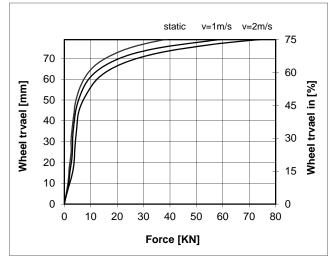
Polyetherurethane is resistant to oils, fats and other chemicals and has good resistance to hydrolysis, too.

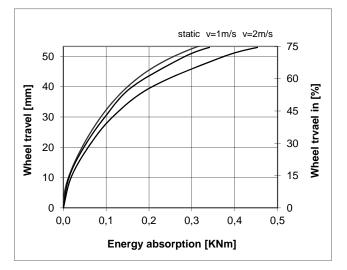
Material buffer:

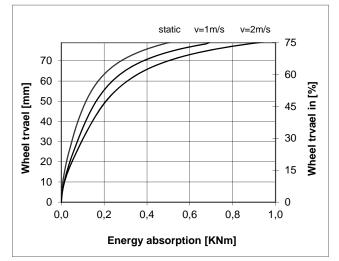
Mixed cellular polyetherurethane 500 – 600 kg/m³ Material symbol >PUR<

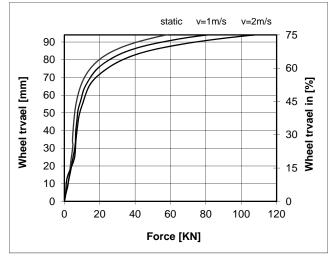

Pin: 8.8

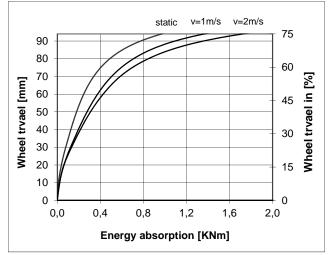
These buffers aren't usable as springs.

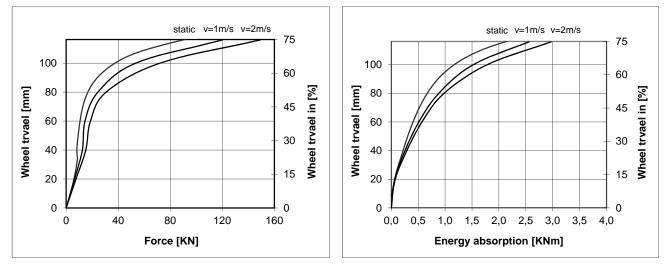

Usage of buffer against buffer H max. <= 1,5 x D

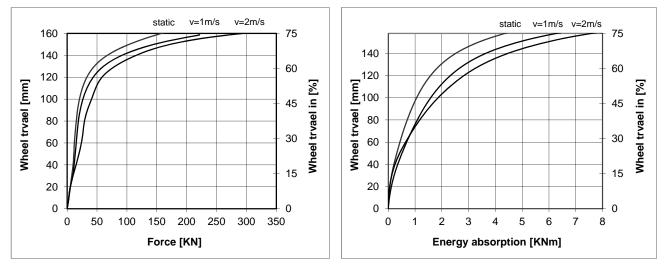



Bump stop KPZ 70


Bump stop KPZ 100

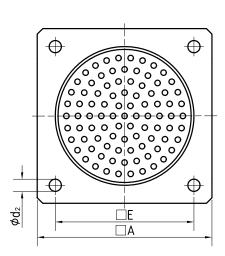


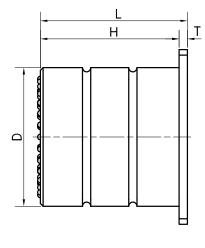

Bump stop KPZ 130



Bump stop KPZ 160

Bump stop KPZ 210




Example for the calculation of the kinetic energy [KNm] and the selection process of a bump stop

Application: Calculation formula: Characteristics:	Mass against impact W = ½ m v ² Mass m Velocity v Deformation %	= 2000 Kg = 1.0 m/s = 70%	static v=1m/s v=2m/s
Calculation:	$W = \frac{1}{2} \times 2000 \times 1.0$ = 1000 Nm = 1.0 KNm	- 10/0	70 45 10 30 10 15
Selection:	Bump stop KPZ 130		0 0,0 0,0 Energy absorption [KNm]

Cellular Buffer ZPP with baseplate

label: ZPP D x H/L

Size							Energy absorption characteristic		Wheel travel	End force	Weight		
D	Н	L	Е	А	d2	Т	kJ**	kJ (max)	mm*	kN*	kg		
80	80	90	80	110	12,5	10	1,4	1,5	56,0	43	1,3		
100	100	110	100	125	125	10	2,6	3,2	70,0	70	2,0		
100	150	160	100	125	,	12,5	12,5	10	3,8	4,6	105,0	70	3,8
125	125	137	125	160	17,0	12	5,5	6,6	87,5	118	3,1		
160	160	172	160	200	17,0	12	10,7	12,4	112,0	180	5,5		
100	240	252	100	200	17,0	12	16,0	18,5	168,0	100	6,4		
200	200	214	200	250	21,0	14	20,0	25,0	140,0	270	10,0		
200	300	314	200	250	21,0	14	30,0	37,0	210,0	270	11,8		
250	250	265	250	320	21,0	15	43,0	49,0	175,0	460	16,5		
315	315	330	315	400	21,0	15	86,0	96,0	220,5	730	27,5		
315	475	490	315	400	21,0	15	128,0	142,0	332,5	730	49,0		
400	400	420	400	500	25	20	188,0	190,0	300,0	1250	66,0		
400	600	620	400	500	20	20	282,0	290,0	450,0	1200	81,0		

* recommended maximal deformation

** at recommended max. deformation

Reliabilities:

Polyetherurethane is in the temperature range -40 ° C to +80 ° C max.

Transient temperature peaks up to +110 °C are possible.

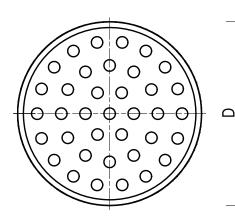
Polyetherurethane is resistant to oils, fats and other chemicals and has good resistance to hydrolysis, too.

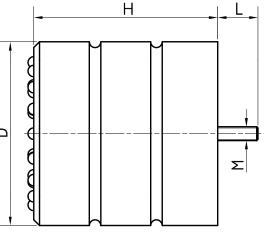
Material buffer:

Mixed cellular polyetherurethane 500 – 600 kg/m³ Material symbol >PUR<

Material Plate:

S 235 JR


These buffers aren't usable as springs.


Usage of buffer against buffer H max. <= 1,5 x D

www.koro-ibs.de subject to change V.10/140225 chapter 19

Cellular Buffer ZPZ

label: ZPZ D x H

Size				Energy absorption characteristic		Wheel travel	End force	Weight						
D	Н	L	Μ	kJ**	kJ (max)	mm*	kN*	kg						
80	80			1,4	1,5	56,0	43	0,35						
100	100			2,6	3,2	70,0	70	0,55						
100	150			3,8	4,6	105,0	70	0,80						
125	125	25	M12	5,5	6,6	87,5	118	1,00						
160	160	35		10,7	12,4	112,0	100	1,90						
160	240			16,0	18,5	168,0	180	2,80						
200	200									20,0	25,0	140,0	270	3,50
200	300			30,0	37,0	210,0	270	5,20						
250	250			43,0	49,0	175,0	460	8,60						
215	315		M24	86,0	96,0	220,5	720	14,80						
315	475	80		128,0	142,0	332,5	730	21,00						
400	400		M20	188,0	190,0	300,0	1050	29,10						
400	600		M30	282,0	290,0	450,0	1250	41,60						
200 250 315 400	250 315 475 400 600		M30	43,0 86,0 128,0 188,0	49,0 96,0 142,0 190,0	175,0 220,5 332,5 300,0	270 460 730 1250	8,60 14,80 21,00 29,10						

* recommended maximal deformation

** at recommended max. deformation

Reliabilities:

Polyetherurethane is in the temperature range -40 ° C to +80 ° C max.

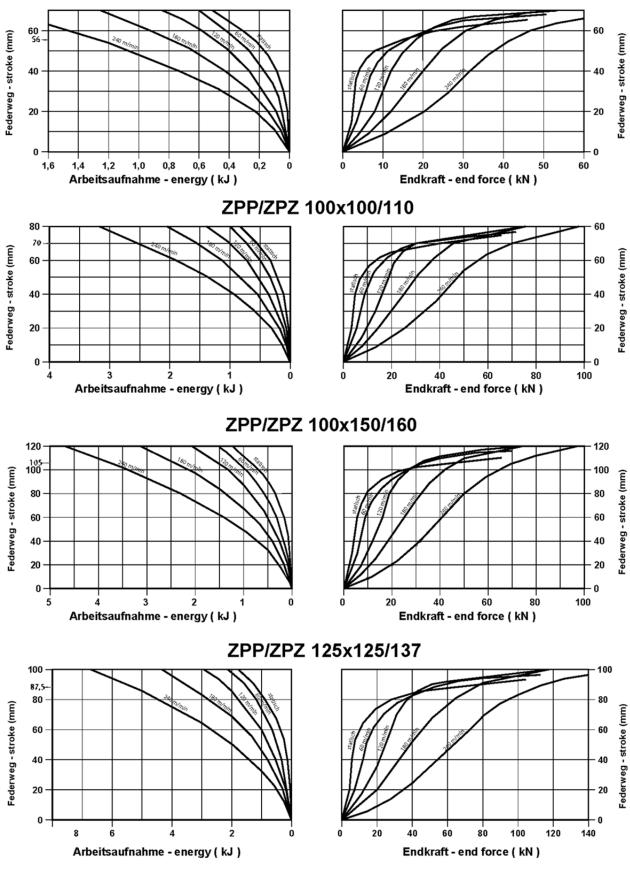
Transient temperature peaks up to +110 °C are possible.

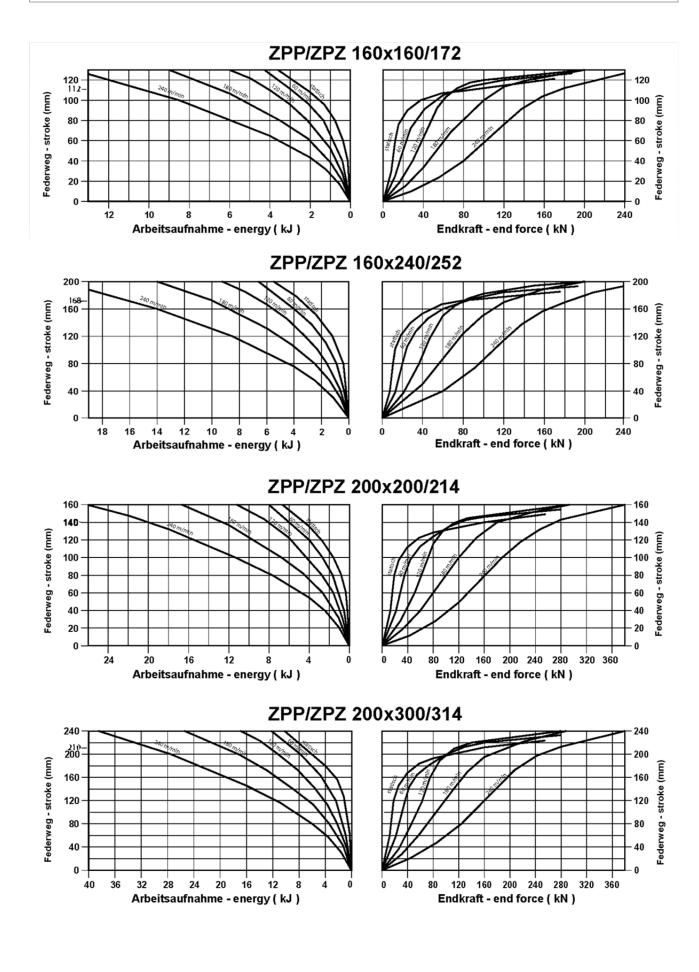
Polyetherurethane is resistant to oils, fats and other chemicals and has good resistance to hydrolysis, too.

Material buffer:

Mixed cellular polyetherurethane 500 – 600 kg/m³ Material symbol >PUR<

Pin: 8.8

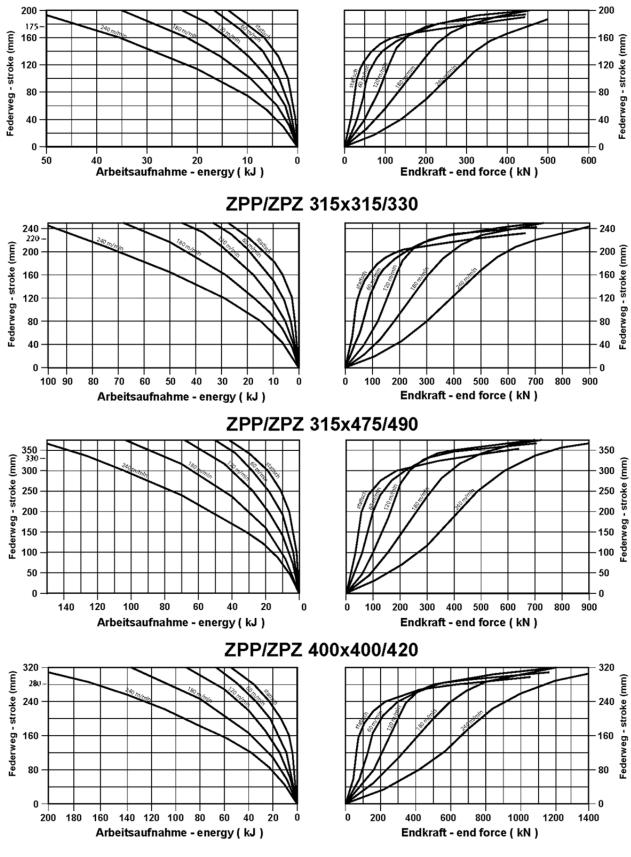

These buffers aren't usable as springs.


Usage of buffer against buffer H max. <= 1,5 x D

ZPP/ZPZ 80x80/90

● KoRo·IBS

MOVING AND BRAKE SYSTEM


● KoRo·IBS

MOVING AND BRAKE SYSTEM

ZPP/ZPZ 250x250/265

KoRo·IBS

MOVING AND BRAKE SYSTEM

Material:

Mixed cellular polyetherurethane

Material symbol >PUR<

The integral foam system is used for the production of flexible integral foam with body panel densities of $500 - 600 \text{ kg/m}^3$

Hardnesses of 25 – 75 Shore A can be accomplished.

Reliabilities:

Polyetherurethane is in the temperature range -40 ° C to +80 ° C max.

Transient temperature peaks up to +110 °C are possible.

Polyetherurethane is resistant to oils, fats and other chemicals and has good resistance to hydrolysis, too.

Safety instructions:

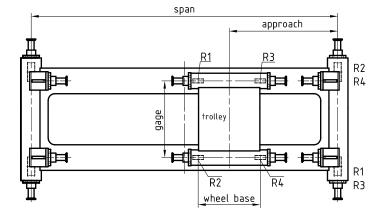
Our recommendation for the max. permissible deformation of the impact buffer is around 70% of the buffer height. The buffer has to be precautionary replaced in case of exceedance of the respective max. permissible load range. Energy storing buffers are not suited for usage in which the rated speed is higher than 4m/s.

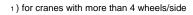
The buffers are safety components and are subject to a natural aging process. Therefore, they have to be checked regularly, e.g. in the context of the annual crane examination acc. to BGV D6 resp. UVV/VBG 9 and 9a (see also VDI 3575).

Security and Environment:

The buffer do not contain substances with hazardous characteristics according to Chem/GefStoffV and can be disposed with the usual trash.Country-specific regulations might have to be regarded.The details of this technical data sheet are based on our current level of knowledge and apply as nonbinding advices. Therefore, the user is not freed of an examination for suitability for the intended use. Hence, the application-oriented possibility lies in the field of responsability of the recipients of our products, as well as eventual trademark rights of third parties, existing laws and regulations. Apart from that apply the requirements of our general sales and delivery conditions.

1	General	Buffer calculation acc. to DIN 15 018
	remarks	The determination of buffers for crane and jack operation is made for one side of the system. The respective unfavourable load position has to be assessed. The following applies for: Crane => jack in smallest start dimension Jack => consideration of the center of mass S


2 R1 ... R4 [kg] wheel loads resulting from deadweight and rigidly carried along Naming, formula loads mass acting on one buffer mpu symbols, units [kg] v [m/s] max. travel speed and Epu [Nm) energy acting on one buffer calculations buffer end force Fpu [kN]


2.1 Determination of the masses acting on the buffer m_{pu}

For cranes:

 $m_{pu} = R1 + R2 + (R3 + R4 + ... Rn)^{1})$

For jack: $m_{pu} = max$. from (R1 + R3) or (R2 + R4)

2.2 Determination of the energy acting on the buffer E_{pu}

	Installation	Energy acting on buffer E _{pu}							
System	for reduction of the velocity	Stroke against rigid fence	Stroke against fence with buffer ²)	Collision of two systems with equal buffers					
Crane	without	$E_{pu} = \frac{m_{pu}^* v^2}{2,768}$	$E_{pu} = \frac{m_{pu}^* v^2}{5,536}$	$E_{pu} = \frac{m_{pu1} * m_{pu2} * (v_1 + v_2)^2}{5,536 * (m_{pu1} + m_{pu2})}$					
Grane	with	$E_{pu} = \frac{m_{pu}^* v^2}{4,082}$	$E_{pu} = \frac{m_{pu}^* v^2}{8,164}$	$E_{pu} = \frac{m_{pu1}^* m_{pu2}^* (v_1 + v_2)^2}{5,536^* (m_{pu1} + m_{pu2})}$					
Jack	without	$E_{pu} = \frac{m_{pu}^* v^2}{2}$	$E_{pu} = \frac{m_{pu}^* v^2}{4}$	$E_{pu} = \frac{m_{pu1} * m_{pu2} * (v_1 + v_2)^2}{5,536 * (m_{pu1} + m_{pu2})}$					
	with	$E_{pu} = \frac{m_{pu}^* v^2}{4,082}$	$E_{pu} = \frac{m_{pu}^* v^2}{8,164}$	$E_{pu} = \frac{m_{pu1} * m_{pu2} * (v_1 + v_2)^2}{5,536 * (m_{pu1} + m_{pu2})}$					

²) applies for equally sized buffer

www.koro-ibs.de

Mixed cellular polyetherurethane integral foam (Polyetegral)

SYSTEM DESCRIPTION	Polyol-Comp (A-Compone			Mixture from Polyol, activators, stabilizers, and if necessary colours			
	Isocyanat- C (B- Compone		Preparation fro Diphenlymetha	om andiisocyanat (MDI)			
APPLICATION PURPOSE	integral foam	The integral foam system assigned for the production of soft - flexibly integral foam parts with shaped part densities of 250 - 700 kg/m ³ and Shore A hardnesses of 25 - 70. Inserts can be over foamed.					
LABORATORY VALUES	jection mach the dimensio		ed production parame	n pressure reaction in- ters in a steel mould in			
TESTS	Measures		Dimension	Test provision			
To Part	1)	2)					
Total density	250	500	kg/m³	DIN 53 420			
Shore hardness	50	70	A	DIN 53 505			
Compression set							
(Area temperature, 72 hrs, 30 minutes after decompression)	1,9	1,7	%	DIN 53572			
	1,9	1,1	/0				
Related to the skin (d=1 mm)							
Density	950	970	kg/m³	DIN 53 479			
Tensile strength	6,5	7,6	N/mm ²	DIN 53 504			
Elongation at break	145	175	%	DIN 53 504			
Tear propagation resistance	3,5	6	N/mm	DIN 53 515			
At the foam	470	400	ka/202				
Density	172	430	kg/m ³	DIN 53 420			
Tensile strength	48	125	N/cm ²	DIN 53 571			
Elongation at break Tear propagation resistance	110 17,2	145 32	% N/cm	DIN 53 571 DIN 53 575			